Commentary

Period and cohort “effects”: interesting history, weak science

Imagine two samples of people who were 50 years
old at the time of sampling: one sample was drawn in
2000 and the other — ten years later, in 2010.
Someone collected information on smoking habits,
computed the percentage of smokers in each sample,
and reported a decline: from 30% in 2000 to 20% in
2010. What have we learned from this study?

A simple-minded answer will restate the results: we
learned that the prevalence of smoking has declined
from 30% to 20%. We didn’t know what happened in
those years, and now we know. But what kind of
knowledge have we gained? Is it historical knowledge,
similar to learning about the number of Democrats in
the U.S. Senate in 2010, or finding out the percentage
of countries that voted for a U.N. resolution?

Most epidemiologists consider themselves scientists,
not historians, and they will claim to have discovered
something about cause and effect. They will name
three variables: AGE — fixed here to 50 by design;
PERIOD - the sampling year (2000, 2010); and
COHORT - the birth year of the participants (1950,
1960). Then, they will talk about estimating the age-
period-cohort effects on smoking, often abbreviated
as APC analysis.

Two intractable problems, however, are built into
APC analysis: one is scientific and the other is
technical.

The scientific problem

First and foremost, there is no such thing as the effect
of the calendar year (birth year, sampling year), or
the effect of subtracting one calendar year from
another (age). Time is the medium in which causation
operates, but it is not a cause of anything. Although
AGE, PERIOD, and COHORT are variables in a
statistical sense (they take values), they do not
belong to the set of natural variables that make the
fabric of causal reality. Not being intrinsic properties
of objects, they have neither causes nor effects.
Anyone who thinks differently should read and think
about thought bias.™?

AGE, PERIOD, and COHORT are associated with
various outcomes because they substitute for some
natural, causal variables. For instance, AGE may
substitute for properties such as cognitive function
and DNA repair, which tend to deteriorate as a
person ages. PERIOD may substitute for properties
such as prescribed drugs and air pollution, which may
differ between survey years. And COHORT may
substitute for causal variables whose values depend

on the era during which one lived: anything between
the beginning of pregnancy and just before the value
of PERIOD.

Many epidemiologists will probably agree with what |
wrote so far. They will claim, however, that this is
precisely what is estimated by APC analysis: the effect
of all kinds of natural variables that are captured by
AGE, PERIOD, and COHORT. If | specify the outcome,
they might even be willing to start a list of candidate
variables.

And there lies the scientific problem.

A causal theory is not an open list of “likely” and
“possible” and “unknown” variables. It is a bold claim
about causal reality that runs the risk of being wrong,
and may be immediately challenged. When someone
claims, for example, to have estimated the effect of
mammography on survival, an army of critics is on
guard. Was the variance large or small? Was
confounding by variable Z accounted for? Was
colliding bias added by mistake? What about
information bias? Effect modification bias? Causal
pathway bias?

APC theories are immune to many of these
challenging questions, because the variables AGE,
PERIOD, and COHORT do not claim much about causal
reality. Typical APC analysis does not follow a causal
diagram, so there are no external confounders,
colliders, or modifiers to consider.>  Whichever
estimate is computed, it is not an estimate of any
causal parameter. In the opening example, for
instance, the prevalence difference in smoking — the
so-called PERIOD effect — arose from an unknown
combination of parameter estimates for some list of
causal variables. Which variables and which estimates
make up the list? Don’t ask. We plead the Fifth.

Since APC theories do not claim much about causal
reality, they do not expose themselves to many
challenges. But they do not add much knowledge,
either. It was Karl Popper who astutely pointed out
the relation between the content of a theory
(knowledge) and its susceptibility to challenges
(falsifiability).3 The greater the informative content of
a theory, the more susceptible it is to empirical
challenges, and the greater the knowledge we may
gain if the theory survives. Conversely, a theory that
does not face many challenges must be thin in
content; it does not add much knowledge.

What challenges are there for a local theory about
the prevalence of smoking at two times, which does
not even claim to estimate a causal parameter? At
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most, we may raise questions about the sample size,
the sampling, and the measurement. That’s about it.
Compare these limited challenges, for example, to
the ongoing controversy about the effect of
mammography on survival.

The technical problem

The technical problem of APC analysis was recognized
long ago4 (although it is often ignored in
epidemiology textbooks). To explain the matter, | will
assume for a moment that AGE, PERIOD, and COHORT
are causal variables. Is it possible to estimate their
effects on smoking?

The difficulty is already apparent in the opening
example. Can we tell which effect is estimated by the
prevalence difference in smoking between 2000 and
20107 It is certainly not the AGE effect because the
two samples were restricted to AGE=50. But is it the
PERIOD effect or the COHORT effect? We don’t know.
Not only do we not know which true causal variables
explain the decline, we can’t even tell whether they
are captured by PERIOD or by COHORT. For instance,
did the prevalence decline because the cost of
cigarettes was higher in 2010 than in 2000 (the
PERIOD effect), or because anti-smoking messages
were strengthened in the 1970s — the teenage years
of the 1960 birth cohort (the COHORT effect)?
Perhaps both. Perhaps neither. No, the oxymoron
“hypothesis generating study” will not save the case.
We don’t need this study to propose and test theories
about the effect of cigarette price on smoking, or the
effect of anti-smoking messages.

The problem is not unique to my simple example. We
cannot tell which effect is estimated even if AGE,
PERIOD, and COHORT take many values. Suppose we
try to estimate the three effects from the coefficients
of a “main effects” regression model:

R=Bo+B1A+B,P+B3C (1)

where A, P, and C denote AGE, PERIOD, and COHORT,
respectively, and R is some response variable such as
the probability of smoking.
AGE, PERIOD, and COHORT are not three independent
variables, however. Any two of them fully determine
the value of the third —a phenomenon called “perfect
multicollinearity”. For example,

A=P-C
Substituting P-C for A in (1), we get

R=Bo+PB1(P-C)+B,P+BsC

R=Bo+(B1+B) P+ (B3—B1) C

Which means that only two parameters are actually
specified (besides the intercept), not three:

R=Bo+yP+6C

But which two? We cannot identify them because the
model may be written as a function of any two of the
three variables.

From a mathematical standpoint there is no unique
solution, because there are three unknown
coefficients (B4, B,, B3) and only two equations:

Bi+B2=v
33_31:5

Subtracting the second equation from the first, we
derive a general formulation of what has been called
“the identifiability problem of APC analysis”:

2B, +B,-Bs=vy-5

Any of the three coefficients is fully determined by
the other two, or alternatively: the three coefficients
may be written as a linear combination that sums up
to a constant. The collinearity among the variables
(C+A-P=0) resulted in collinearity among the
coefficients too (2B,+B,—B3=y-0).

Do we need solutions?

The scientific problem of APC analysis cannot be
solved because no argument can transform a theory
that is thin in content into a rich content theory. At
most, we may claim that APC analysis helps to predict
future trends on the basis of past trends. Futurism of
this type contains some elements of a primitive
prediction model, but it may also be viewed as an
extrapolation beyond the observed range of data
(e.g., smoking prevalence in 2020), which is a
questionable practice. For instance, past time trends
may drastically change following the discovery of a
new therapy, or the signing of a new law. Who can
guess future discoveries or future laws?

Where the science is weak, statistical solutions are
solutions of a math problem rather than aides to
scientific discovery. The math problem — estimating
coefficients under perfect multicollinearity — s
relevant to science only if we declare interest in the
coefficients of equation (1). Are they of interest
indeed? What is their meaning?

In statistical jargon the boilerplate answer is well
known: the coefficients tell us about “independent
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associations”. For example, the coefficient of PERIOD
quantifies the linear association of PERIOD with
smoking, independent of AGE and COHORT. But
anyone who understands the connection between
expected associations and a causal structure knows
that the magnitude of an independent association is
not synonymous with the magnitude of an effect. In
fact, there is no scientific merit in estimating an
independent association, unless the breaking of
dependencies serves to block unwanted open paths
between the presumed cause-and-effect.’

Only if our theories are encoded in a causal diagram
can we deduce which adjustment is needed to
estimate an effect and which “adjustment” is
redundant or possibly detrimental (increasing the
bias, penalizing the variance, or both). Since the
variables AGE, PERIOD, and COHORT do not show up
in any causal structure, mutual adjustment is no more
than a mathematical challenge, dressed up as a
service to science.’

Moreover, under the axiom of indeterminism we
don’t expect perfect collinearity among natural
variables (beyond chance collinearity in a given
sample). Something is methodologically incoherent, if
not ridiculous, in a problem that was created by
choosing AGE, PERIOD, and COHORT to represent
unknown causal variables among which the problem
does not exist. Indeed, fit a model with true causal
variables and the problem is gone.

Don’t know which variables to model? Well, do you
have a sharp theory to test, or just three variables
that happen to be handy, along with pompous
phrases such as “formative events in different eras”
and “the lifetime experience of different birth
cohorts”?

Even under the weak theory of unspecified causal
variables behind COHORT and PERIOD, there is no reason,
for example, to adjust the association of smoking with
COHORT for PERIOD. The association with a cohort variable
(say, smoking in the high school years) is never confounded
by a period variable (say, cigarette price in the survey year)
because a confounder never follows the exposure on the
time axis. Being a cause of the exposure, a confounder must
precede the exposure. Unfortunately, most of the
statisticians who wrote on APC analysis did not demonstrate
clear understanding of the term “confounding bias” as
formally derived from causal diagrams. Like many
statisticians, they think that “independent association” (a
statistical idea) and “unconfounded association” (a causal
idea) are exchangeable terms. They are not.

A load of solutions

| could have ended the commentary with the last
section. Nothing more needs to be said. It is
interesting, however, to see how statistical minds
have tried to solve the identifiability problem of APC
analysis. So let’s pretend that AGE, PERIOD, and
COHORT are causal variables; that causation is
deterministic; and that mutual adjustment is indeed
needed to estimate the effect of each variable.

Almost all of the solutions share the following idea:
Replace equation (1) with another equation from
which some parameters may be uniquely estimated —
an estimable function, as it may be called. To that
end, some constraint (restriction) must be imposed
on the relation of the outcome with age, period, and
cohort.

Constraints of one kind reduce the number of
parameters that need to be estimated (there is one
too many). The remaining parameters are no longer
perfectly collinear and may be uniquely estimated.
Other constraints circumvent collinearity by
increasing the number of parameters, as will be
explained shortly. In scientific terms, all of the
constraints are untestable theories about some
effect(s).

Perhaps the simplest solution is categorization. The
continuous variables are replaced with categorical
variables, which are then modeled by dummy
variables. As long as the length of the time interval is
not identical for the categories of age, period and
cohort, the new variables are no longer perfectly
collinear; their coefficients can be estimated. What is
the constraint? The effect is assumed to be identical
for all values within each arbitrary-length interval
(implying that only non-linear components are
estimateds).

Interestingly, this solution of the identifiability
problem goes against classic statistical reasoning.
When a continuous exposure is categorized (say, to
explore the dose-response function), we always strive
for as narrow categories as possible — precisely
because the effect is constrained to be identical
within each category. The more data we have, the
more we relax that constraint by choosing narrower
categories (the limits of which are the values of the
continuous variable). Here, no matter how much data
are available, there is no motivation to shorten the

b Formally, an estimable function is a function that provides
unique estimates that do not depend on the chosen
constraint. Here, | use the term liberally to denote any
solution of the identifiability problem.
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intervals and approach the continuous variable.
Sounds awkward.

Another simple solution is a two-factor model. The
number of independent variables is reduced from
three to two by setting the coefficient of one variable
to zero. For example, assume a priori that PERIOD has
no effect on the outcome and thereby derive an
estimable function:

R=Bo+B1A+B,C (2)

On some occasions epidemiologists have been willing
to adopt a two-factor model. For example, it is often
claimed that the incidence of a disease is affected by
AGE and by COHORT, but not by PERIOD. Of course,
nothing is affected by any of these variables, but why
can’t some disease be prevented by a causal variable
that is captured by PERIOD — say, a new drug?
Moreover, does the method of science accept an
untestable premise that one variable has a null effect
on another?

Another possible constraint is equality of two
coefficients (B,=B, or B,=Bs). For example, accept the
untestable claim that the coefficient of AGE and the
coefficient of PERIOD are identical:

R=Bo+B1A+B1P+B3C (3)

Now we have a set of three equations, which has a
unique solution:

B:—B,=0
Bi+Ba=v
33_31:5

(Notice that B,=B;, equality of AGE and COHORT
effects, does not provide a unique solution.)

When all three variables are provided in equal length
intervals, it is enough to assume equality of
coefficients for two adjacent categories.“’6 For
instance, if the reference age group is 25-29, it is
sufficient to assume that the coefficient of age group
30-34 is identical to the coefficient of age group 35-
39. Again, perfect collinearity is avoided by reducing
the number of estimated coefficients by one (or
equivalently, by making one interval longer than all
others).

Another type of constraint is to replace one of the
three variables with a product of the other two. For
example,

R=PBot+B1A+B,P+B3AP (4)

which is a classic model of effect modification
(interaction) between AGE and PERIOD. What

happened to the cohort effect? Is it assumed to be
null? The answer is tricky. If B3=0 in expectation, the
model is essentially reduced to a two-factor model,
which implies a null effect of COHORT. Otherwise, the
cohort effect is redefined as the phenomenon of
effect modification between AGE and PERIOD. The
identifiability problem remains, however. We cannot
tell which two variables are the causes of the
outcome and which variable should be redefined as
the phenomenon of effect modification. Moreover,
the model is irrelevant if effect modification operates
only between coinciding causes.’

A different category of solutions calls for higher order
polynomials, namely, for more parameters. For
example,

R=Bo+B1A+PB A" +BsP+PB P’ +PBs C+PBs C (5a)

As before, the linear components of the function
cannot be estimated due to collinearity of A, P and C,
but the quadratic terms are not collinear. It is
therefore possible to estimate the curvature of R as a
function of each variable.® The merit of this solution is
questionable, though: First, it is of no help if the
functions happen to be strictly linear. Second, the
curvatures do not add interesting knowledge, unless
we also know the general (linear) direction of each
effect.” Third, the model is not necessarily a three-
factor model. It may also be written as a model of
effect modification between two of the three
variables. For example, if C is replaced with P-A, the
model takes the following form:

R=ap+0,A +a2A2+a3P+a4P2+a5AP (5b)

Which is just another way to specify effect
modification between A and P. Again, which two
variables are the causes of the outcome and which
one should be redefined as the phenomenon of effect
modification?

Partial least squares regression offers a unique
solution of a linear regression model in cases of
perfect multiple collinearity, such as equation (1). All
three coefficients (B,, B, and B3) may be estimated by
this method. How come? What is the magical solution
for APC analysis? Buried in an appendix,10 we find the
answer: an implicit constraint on the coefficients
(B1+B,=B3). Some linear combinations of the
coefficients underlie other functions that estimate
esoteric parameters, such as differences between
differences of  unknown coefficients, and
relationships between unknown slopes.11

Another peculiar solution is to replace the estimation
of coefficients with the estimation of something
else.™ In ANOVA models (linear regression on dummy
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variables), the effect of age groups, period groups,
and cohort groups is redefined as the contribution of
the respective set of dummy variables to the variance
of the outcome — after accounting for the other two
sets. In other regression models, it is a likelihood ratio
Chi-square — the improvement in model fit due to
each set beyond the other two. What makes these
statistics measures of effect, however? Does
partitioning of the variance tell us about effects? Is
any statistic that can be attached to a variable may be
called “the effect of that variable”? Maybe so — in
some minds.

When data are available for each person (or year),
the identifiability problem may be solved by
categorizing one of the three variables, followed by
the fitting of a hierarchical mixed effects regression
model. For instance, create a categorical version of
COHORT (by grouping adjacent birth cohorts); model
the new variable as the cluster variable; and estimate
the coefficients of AGE and PERIOD. What happened
to the cohort effect, though? Well, its effect is now
called “a random effect”.

With mixed effects models at hand, the identifiability
problem is easy to solve. Simply replace as many fixed
effects coefficients as you wish — all of them, if
possible — with random effects coefficients. Who
needs those troublemakers anyway?

Here is one attempt to explain why we may
categorize the COHORT variable (on the way to a
hierarchical model):

“However, since meaningful cohorts often are
considered to be of durations longer than single years,
it then will be feasible to group the cohort dimension
into multiyear periods while retaining single-year
measurements for the age and time period
dimensions.”*?

€ A mixed effects model contains terms for fixed effects (for
example, the coefficients in equations 1-5) and terms for the
so-called random effects. Mixed effects models are often fit
when the data can be organized in clusters of correlated
observations.  Typical examples include repeated
measurements, which are clustered — and correlated — in a
person (longitudinal analysis); observations that are
clustered in some group, such as students of a school or
residents of a neighborhood (multi-level analysis); and
observations that are clustered in a study (meta-analysis).
These models are often called “hierarchical” because the
cluster variable is “above” the individual observations (and
there may be a cluster of clusters). In mixed effects APC
models, any of the three variables may be considered the
cluster variable (for which no fixed-effect coefficient is
estimated). Since there is no natural hierarchy here, the
adjective “hierarchical” is not a correct descriptor of these
models.

Translation: Since COHORT (birth year) is not really
the variable of interest, its coefficient is not
estimating any single causal parameter. The true
causal variables behind the birth year are unspecified
lifetime exposures, so exposures during any single
year are not meaningful (unless they are captured by
a single year of PERIOD or AGE?). As far as lifetime
exposures are concerned, different cohort eras,
which span several decades, are not that different if
the non-overlapping time is relatively short — a few
years. Therefore, we may safely combine adjacent
birth cohorts (e.g., the birth years 1950-1955).

The hierarchical model approach, as outlined above,
was thoroughly criticized both theoretically and
empirically.B'15 | will add only two comments: First,
the argument for grouping adjacent birth cohorts
holds for adjacent ages (AGE) and adjacent survey
years (PERIOD), so any of the three variables may be
designated as the cluster variable. Indeed, the
preference for cohort (and period) in APC analysis
was substantiated by “guidelines” — a dictatorial
substitute for substantive arguments. Second, along
this line of reasoning there is no justification for the
retaining of any of the three continuous variables. All
of them may be categorized simultaneously. In short,
the hierarchical model approach looks like an attempt
to force a problem on a statistical tool rather than
finding a statistical tool that would fit a problem.

Finally, the so-called intrinsic estimator (IE) may be

counted among the latest, popular solutions.
. . ..d

Founded on principal component analysis,” the IE was

claimed to be the ultimate solution to the

identifiability conundrum. Too bad it turned out to be

neither new nor unbiased nor constraint-free.’*’

A load of solutions indeed — almost too many to
choose from. Fortunately, we don’t need to worry
about choosing any of them, because age, period, and
cohort affect nothing and confound nothing. Their
independent associations with any outcome are
generic statistics, not scientific parameters. If you
forgot why, read the previous section again.

Epilogue

Peculiarly enough, it was occasionally proposed to
solve the identifiability problem by modeling a

d Principal component analysis transforms a set of highly
correlated variables into a set of new, linearly uncorrelated
variables, which are called principal components. The latter
are created hierarchically according to the remaining
variance (largest to smallest) that is accounted for by each
new variable. The number of principal components may be
smaller than the number of the original variables.
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subject matter variable, along with COHORT, that
might “explain” some of the cohort effect. Perhaps
more than anything, this solution illustrates the
“upside down” thinking about the scientific matter.
Such a variable does not explain any “cohort effect”.
It is the only variable in the model that might have an
effect on the outcome!

The so-called age effect, period effect, and cohort
effect are not effects at all in causal reality.
Therefore, the problem of estimating independent
associations in APC analysis is no more than a
mathematical challenge, mistakenly portrayed as
relevant to science. Analysts need not worry about
choosing a model for APC analysis.ll’18 Whichever
independent association they are trying to estimate,
it is not an estimate of a causal parameter. As for
guantitative time trends, they have more in common
with good history (the study of the past) than with
good science (the study of causal laws).

Acknowledgement: Doron Shahar — for comments
on a draft manuscript

References

1. Shahar E, Shahar DJ. Causal diagrams,
information bias, and thought bias. Pragmatic
and Observational Research 2010;1:33-47

2. Shahar E, Shahar DJ: Causal diagrams and three
pairs of biases. In: Epidemiology — Current
Perspectives on Research and Practice (Lunet N,
Editor).
www.intechopen.com/books/epidemiology-
current-perspectives-on-research-and-practice,
2012:pp. 31-62

3. Popper KR. The Logic of Scientific Discovery.
Hutchinson Education, 1959; Routlage, 1992

4. Mason, KO, Mason WM, Winsborough HH, Poole
WK. Some methodological issues in cohort
analysis of archival data. American Sociological
Review 1973;38:242-58

5. Fienberg SE, Mason WM, Identification and
estimation of age-period-cohort models in the
analysis of discrete archival data. Sociological
Methodology 1979;10:1-67

6. Kupper LL, Janis JM, Karmous A, Greenberg BG.
Statistical age-period-cohort analysis: a review
and critique. Journal of Chronic Diseases
1985;38:811-830

7. Shahar E. On effect modification and its
applications.
http://www.u.arizona.edu/~shahar/
commentaries.html

10.

11.

12.

13.

14.

15.

16.

17.

18.

Holford TR. An alternative approach to statistical
age-period-cohort analysis. Journal of Chronic
Diseases 1985;38:831-836

Authos’ reply. Journal of Chronic Diseases
1985;38:837-840

Tu Y-K, Davey Smith G, Gilthorpe MS.
A new approach to age-period-cohort analysis
using partial least squares regression: the trend
in blood pressure in the Glasgow Alumni cohort.
PLoS One 2011 Apr 27;6(4):e19401. doi:
10.1371/journal.pone.0019401

O'Brien R. Age-Period-Cohort ~ Models:
Approaches and Analyses with Aggregate Data
[e-book]. Boca Raton, FL: CRC Press; 2014.
Available from: eBook Collection (EBSCOhost),
Ipswich, MA

Yang Y, Land KC. Age-period-cohort analysis of
repeated cross-section surveys: fixed or random
effects? Sociological Methods & Research
2008;36:297-326

Bell A, Jones K. Don't birth cohorts matter? A
commentary and simulation exercise on Reither,
Hauser and Yang's (2009) age-period-cohort
study of obesity. Social Science & Medicine 2014;
101:176-180

Bell A, Jones K. Another 'futile quest'? A
simulation study of Yang and Land's hierarchical
age-period-cohort model. Demographic
Research 2014;30:333-360

Bell A, Jones K. Should age-period-cohort
analysts accept innovation without scrutiny? A
response to Reither, Masters, Yang, Powers,
Zheng and Land. Social Science & Medicine
2015;128:331-333

Luo L. Assessing validity and application scope of
the intrinsic estimator approach to the age-
period-cohort problem. Demography
2013;50:1945-1967

Luo L. Paradigm shift in age-period-cohort
analysis: a response to Young and Land, O’Brien,
Held and Riebler, and Fienberg. Demography
2013;50:1985-1988

Yang Y, Land KC. Age-Period-Cohort Analysis:
New  Models, Methods, and Empirical
Applications. Chapman & Hall/CRC, 2013



